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ABSTRACT
This work provides an exact characterization� across crys�
tal lattices� of the computational tractability frontier for
the partition functions of several Ising models� Our results
show that beyond planarity computing partition functions
is NP�complete� We provide rigorous solutions to several
working conjectures in the statistical mechanics literature�
such as the Crossed�Bonds conjecture� and the impossibil�
ity to compute e�ectively the partition functions for any
three�dimensional lattice Ising model� these conjectures ap�
ply to the Onsager algebraic method� the Fermion operators
method� and the combinatorial method based on Pfa�ans�
The fundamental results of the area� including those of On�
sager� Kac� Feynman� Fisher� Kasteleyn� Temperley� Green�
Hurst and more recently Barahona�
� for every Planar crystal lattice the partition functions for the
�nite sublattices can be computed in polynomial�time� paired
with the results of this paper�
� for every Non�Planar crystal lattice computing the parition
functions for the �nite sublattices is NP�complete� provide an
exact characterization for several of the most studied Ising
models� Our results settle at once� for several models� ��	 the

D non�planar vs� 
D planar� �
	 the next�nearest neighbour

�Research supported by the DOE� MICS Program DE�
AC����AL�����

interactions vs� 
D� and ��	 the general �D Ising� intensively
studied open problems of the area�

Our results are obtained by establishing a Kuratowski�like
charcterization theorem for the class of �in�nite	 crystal
lattices called Bravais lattices� that can also be extended
to general crystal structures� The �forbidden subgraph��
called Kuratowskian� plays the central role� being contained
in every non�planar crystal lattice� This universality phe�
nomenon �existence independent of lattice structure	� cap�
tured in the �equation�� Translational Invariance � Non�
Planarity � Universality of Subgraphs� provides a uni�ed un�
derstanding of non�planarity as a root of computational in�
tractability� The important structural property of the Ku�
ratowskians is that they are �embedding�universal� for ��
regular graphs� in the sense that every such graph has a sub�
division included in the Kuratowskian� Several NP�hardness
results are obtained in this paper� by using di�erent types of
Kuratowskians� which in turn witness NP�hardness of vari�
ous counting coe�cients of the partition functions�

The exceedingly complex mathematical methods that solved
the planar cases of the Ising model� could be interpreted as
an explanation of why no �D solvable cases have been found�
Richard Feynman in ��
 commented � The exact solution
for three dimensions has not yet been found�� Our results�
for the Ising models that we consider in this paper� provide
evidence of a paradigm�shift� the �has not yet been found�
needs now be replaced with �it may be computationally in�
tractable across lattices��

1. INTRODUCTION

1.1 The Search for Exactly Solved Models in
Statistical Mechanics

One of the most exciting periods in statistical mechanics
was in ���� with the discovery by Lars Onsager of the �rst
exactly solved model that exhibits a provable phase tran�



sition� The model was the Ising model of ferromagnetism
on the two�dimensional square lattice� This result energized
some of the most brilliant researchers� both physicists and
mathematicians in the quest for generalizing the method and
carrying on the search for other exactly solved models� to�
wards the three�dimensional models� Decades of research of
highest distinction uncovered new methods� and focused on
a variety of lattices in the search for other tractable models�
The research eventually was extended to rigorously solve all
planar lattices� but no three�dimensional lattice was found
to be exactly solvable� All methods proposed� from On�
sager�s� to Fermions� and to P�a�ans� were all rediscovering
the same tractable planar cases� and none could deal with
the �D case� Tractability was hitting a �wall� no matter
what methods were used� Even research focusing on 
D non�
planar lattices� of signi�cant interest in statistical physics�
turned out without success� Non�planarity of the lattice�
expressed in physical terminology as lattices with �crossed�
bonds�� was observed to be the root of di�culty for various
methods� The search for understanding the limitations of
the methods based on Onsager� Fermions and Pfa�ans con�
tinued to be active for several decades�

In this work we identify the exact computational tractability
frontier of these methods in the context of some of the most
studied variants of the Ising model� Here � are citations

�H� N� V� Temperley wrote in ��� ���� No physically in�
teresting non�planar lattice has been solved completely as
yet��� The simplest such lattice is the plane square lattice
with interactions along the diagonals as well as the sides
of the squares �sometimes called the �union jack� lattice����
It is somewhat melancholy thought that nearly twenty fur�
ther years of work has added relatively little to our knowl�
edge of anlytical properties of the Onsager�ising model it�
self� though we now have a great deal more information de�
duced from series expansions� ��� With monotonous regu�
larity each method has reproduced virtually the same results
as those listed above and has added virtually no new ones
on the analytic side� This information may be summarized
as knowledge for planar lattices� but not for any interesting
non�planar lattice� of the partition function and correlations
as a function of temperature in zero magnetic �eld� together
with the spontaneous magnetization and various boundary
and impurity e�ects� ��� It relates either the trace of �vac�
uum to vacuum expectation� of a product of linear sums of
operators� known as Cli�ord or Fermi operators� to what is
known mathematically as a Pfa�an� This experience is al�
most unique in mathematical physics� �Nearly always a valid
new treatment of a problem produces new results as well as
repoducing old ones��
McCoy and Wu wrote in ��� �
�� in the comprehensive
monograph The Two�Dimensional Ising Model at the end of
the book�
Conspicuously missing from the table of open problems are	
�
� the calculation of the free energy of the two dimensional
Ising model when H � ��� and ��� the calculation of the free
energy of the three dimensional Ising model� This omission
is intentional� These two problems are both extremely dif�
�cult� Indeed� they have existed for a quarter of a century
and absolutely no progress has been made� �By no progress�
we mean no progress toward an explicit solution��
Mark Kac in ��� �

�
The three�dimensional case does exhibit a phase transition
but exact calculation of its properties has proved hopelessly
di�cult� The two�dimensional case for so�called nearest�
neighbour interactions was solved by Lars Onsager in 
��
Onsager�s solution� a veritable tour de force of mathematical
ingenuity and inventiveness� uncovered a number of supris�
ing features and started a series of investigations which con�

due to some of the major research contributors of the area�
recording both excitement and hopelessness about the state
of the research in early ���s� with the today knowledge on
computational complexity� we can see that these comments
describe the simptoms of an NP�completeness phenomena�

1.2 The Two Dimensional Ising Model
Exactly solved models in statistical mechanics are few �
��
and all are one� or two�dimensional lattice models� the most
fundamental of them is the two�dimensional Ising Model of
Ferromagnetism� exactly solved by Onsager� The impor�
tance of such exact solutions is due to the physical insight
they provide into phase transitions� The solution provides
an analytical closed�form�or rigorously solved form for the
partition function� which in turn provides the basis for exact
predictions for such systems� all thermodynamical quanti�
ties can be computed exactly�

The Ising model was introduced by Ernst Ising in �
� �����
In ���� Peierls ���� showed by a probabilistic argument that
the two�dimensional Ising model has a phase transition� In

tinue to this day�
The solution was di�cult to understand and George Uhlen�
beck urged me to try to simplify it� �Make it human� was
the way he put it� ��� At the Institute �for Advanced Studies
at Princeton� I met John C� Ward ��� we succeding in red�
eriving Onsager�s result� Our success was in large measure
due to knowing the answer� we were� in fact� guided by this
knowledge� But our solution turned out to be incomplete ���
it took several years and the e�ort of several people before the
gap in the derivation was �lled� Even Feynman got into the
act� He attended two lectures I gave in 
��� at cal Tech and
came up with the clearest and sharpest formulation of what
was needed to �ll the gap� The only time I have ever seen
Feynman take notes was during the two lectures� Usually�
he is miles ahead of the speaker but following combinatorial
arguments is di�cult for all mortals�
Richard Feynman in ��
 ����
The exact solution for three dimensions has not yet been
found�
C� A� Hurst in ��� �����
� It has been rather puzzling that the two methods at present
known for �nding exact solutions for the Ising problem� namely
the algebraic method of Onsager and the combinatorial method
emplying Pfa�ans� have exactly the same range of application�
although� they appear so di�erent in approach� Problems which
yield to one method yield to the other� whilst problems which are
not tractable by one approach also fail to be exactly solved by
the other� although the reasons for this failure appears to have
completely di�erent mathematical origins� On the one hand�
Ising problems which cannot be solved by the Pfa�an method
are characterized by the appearance or crossed bonds which
produce unwated negative signs in the combinatorial generating
functions� and such crossed bonds are usually manifestations of
the topological structure of the lattice being investigated� i�e�� the
three�dimensional cubic lattice� On the other hand� the Onsager
approach breaks down because the Lie algebra encountered in the
process of solution cannot be decomposed into su�ciently simple
algebra� It is usually stated that such more complicated alge�
bras occur only when the corresponding lattice has crossed bonds�
although an explicit proof of this fact does not appear to be pub�
lished� ��� It is di�cult to see why the two methods have exactly
the same limitations ���
P� W� Kasteleyn in ��� �
���
� The dimer problem and the Ising problem were �nally
solved for planar lattice graphs only� and it was found that
a generalization to non�planar lattice graphs �including all
three�dimensional lattice graphs� is impossible unless the
number of Pfa�ans involved is allowed to increase to in�
tractably large numbers�



���� Kramers and Wannier �
�� established the exact loca�
tion of the phase transition� the Curie point� based on the
assumption that such a point is unique� Onsager� in ����
���� provided the complete� de�nitive exact solubility of the
two�dimensional square lattice Ising model�

All such results were obtained using extremely complex math�
ematical arguments� A tremendous research e�ort in math�
ematical physics emerged for the identi�cation of those crys�
tal lattice structures that provide soluble models� New pow�
erful mathematical methods were discovered� but none of
them were able to identify any soluble three�dimensional
model� However� the belief was that advances in mathemat�
ical physics will eventually solve such models�
As Onsager�s solution was an extraordinarily deep and in�
volved argument� George Uhlenbeck challenged Mark Kac to
�Make it human� �

�� Kac andWard in ��
 �
�� attempted
to provide an exact evaluation of Onsager�s partition func�
tion formula based on a combinatorial interpretation� This
is based on viewing the partition function as the generating
function for the graph�counting problem of Eulerian sub�
graphs of the lattice� They reduced the problem to that
of computing a determinant� The argument� however� was
incomplete� Feynman �

� provided the key technical formu�
lation of the needed missing lemma� the so�called Feynman�s
conjecture ���� ���� which eventually was proven by Sherman
in ��� ����� making the Kac�Ward method completely rig�
orous� A variant of the Kac�Ward method occured in the
early ���s� based on the Pfa�ans� In this method� the
same combinatorial interpretation is used� but the problem
is reduced to a related problem of counting dimers in an
associated lattice �or perfect matchings	 which was solved
using determinats via Pfa�ans by Kasteleyn ��� ���� and
Fisher ����

A more comprehensive account of the developments concern�
ing statistical mechanics research of the Ising model can be
obtained from� ���� ���� ���� ����� �
��� ����� ����� ����� �
��
����� ���� ��� �
��� ����� ���� ����� �
���

1.2.1 Ising Models and Computational Complexity
NP�completeness was used as a rigurous method to clas�
sify the computational complexity of problems in statistical
physics� see e�g�� ���� ���� Powerful intractability results�
previously obtained� in the area of Ising models� closely re�
lated to this research used di�erent classes of graphs�
� Graphs	 Finite sublattices of a speci�c lattice� Barahona
��� showed that for the Ising model on �D cubic lattice�
with interaction energy f�J� ���Jg� the problem of com�
puting the ground states on �nite sublatices is NP�complete�
Our work builds and extends the elegant work of Barahona�
showing that computational intractability is present in ev�
ery non�planar lattice� including the 
D non�planar lattices�
� Graphs	 The entire class of �nite graphs� Results by Jer�
rum and Sinclair �
��� and Jaeger� Vertigan and Welsh ���
show that computing the partition function for the Ising
model in this case is NP�complete�

1.3 An outline of the paper
The technical outline of the paper is as follows� First a
Kuratowski�like charcterization theorem is proved for a class
of �in�nite	 crystal lattices called Bravais lattice� Basically�
the theorem is general and follows from the two �axioms�

��	 translational invariance �of crystal lattices	 and �
	 non�
planarity� The �forbidden subgraph� called Kuratowskian
plays the central role in what follows� By the theorem it is
contained in every non�planar crystal lattice� This univer�
sality phenomenon �existence independent of lattice struc�
ture	 holds the key to the universality of NP�completeness
of the partition functions of the Ising model for �nite sub�
lattices� The important structural property of the Kura�
towskians is that they are embedding�universal for ��regular
graphs� in the sense that every such graph has a subdivision
included in the Kuratowskian� This gives the fertile ground
for a proof of NP�completeness� Several results are obtained
in the paper� by using di�erent types of Kuratowskians�
which in turn show NP�hardness of various counting coe��
cients of the partition functions�

2. ISING MODELS
Ising models are of fundamental importance in statistical
physics� The Ising model can be formulated on any graph
as follows� Consider a graph GN � �V�E	� having N ver�
tices �representing lattice sites	 V � fv�� ���� vNg� and a set
E of edges �representing the near�neighbour interactions	�
Each edge �i� j	 � E has an associated constant interaction
energy or coupling constant Jij is a positive� zero or nega�
tive number� We interpret Jij as labels of the corresponding
edges� The model is usually de�ned as the the graph of a
crystal lattice where the vertices represent lattice sites� and
the edges represent near�neighbour interactions�
Every vertex vi has a magnetic spin variable �i associated
with it� it takes values �i � ��� where �� represents the
�up spin�� and �� represents the �down spin�� A state or a
spin con�guration � is an assignment of N �� values to the
variables �i� � � i � N � Let � � f�����gN be the set of
all spin con�gurations�
The energy of a state � in zero magnetic �eld is given by
the Hamiltonian� H��	 � �

P
Jij�i�j � Three fundamental

objects of study for statistical physics are�

Ground State A spin con�guration of minimum energy is
called a ground state�

Partition Function The partition function of the Ising
model is given by�

Z��	 �
X

���

e
�
H���
�T

where � is the Boltzmann constant� and T is the tem�
perature�

Free Energy The free energy from the magnetic degree of
freedom is �T logZ�T 	� and the equilibrium magnetic
properties� magnetization� entropy� magnetic energy�
speci�c heat and susceptibility� can all be obtained by
di�erentiating the partition function with respect to
the temperature�

In this �rst paper we will be concerned with the problems
of computing ground states and partition functions� We
will not address directly the problem of computing the free
energy�

2.1 Ground States and the Minimum Weight
Cut



Let us consider a graph GN � �V�E	 with its edges weighted
by the Jij interaction energies� The energy of a state � �
���� ���� �N 	 is given by H��	� It is easy to see that H can
be de�ned in terms of cuts in GN � Indeed� for a state � �
���� ���� �N 	� let us denote by C� � fvi j �i � ��g� and by
C� � fvi j �i � ��g� This de�nes the cut C � �C�� C�	 of
GN � Let us also de�ne E

�� and E� as the set of edges with
both endpoints in C�� and respectively in C�� We divide
the vertices in two parts� The cut refers to the set of edges
that cross between the �up spins� vertices to the �down
spins� vertices� Let E�� be the set of edges in the cut� that
is� all edges with one endpoint in the C� and the other in
C�� Another alternative notation for E�� that highlights
the cut C is ��C	� The weight of the cut is weight�C	 �P

ij���C� Jij � The summations used in de�ning the model

are over edges in the graph� the short hand ij stands for
fvi� vjg�

Clearly as � varies over all spin con�gurations� the corre�
sponding cut C ranges over all cuts of GN � Observing that
we actually have a one�to�one correspondence between spin
con�gurations and cuts we can write the Hamiltonian as fol�
lows� H�C	 � �

P
ij�E� Jij �

P
ij�E� Jij �

P
ij�E�� Jij

and so H�C	 � �
P

ij�E Jij � 

P

ij���C� Jij � If C is the

cut de�ned by �� H��	 is the same as H�C	� For a given
cut� the Hamiltonian is now a sum of a constant term �for
the graph	 and twice the weight of the cut� Minimizing the
Hamiltonian� that is� �nding the ground state� is therefore�
equivalent to computing the cut of minimum weight in our
graph�

The Minimum Weight Cut Problem can be solved in poly�
nomial time for the class of weighted planar graphs� That
is� for every choice of positive� zero or negative weights for
the edges of a planar graphs� we can compute in polynomial
time the minimum weight cut of such graphs� The prob�
lem in NP�complete on arbitrary graphs�We will show in
section �� that the same problem is NP�complete for every
non�planar crystal lattice graph� when restricted to the set
of its �nite sublattices�

3. PLANAR LATTICES: COMPUTATIONAL
TRACTABILITY

Computing both the ground states and the partition func�
tion for planar graphs can be done in polynomial time� ���
and �
��� Planarity and its duality are fundamental for ob�
taining computationally tractable solutions� For the mini�
mum weight cuts in planar graphs� algorithms are due to
Hadlock ��� ��
� and Goodman and Hedetniemi ����� and
��
�� The problem of computing the partition function for
the zero �eld Ising model for �nite planar lattices is equiv�
alent to that of computing a determinant� and therefore�
can be done in polynomial time� For planar graphs� Pfaf�
�an orientations could be constructed �Kasteleyn�s theorem
�
��� which in turn relate the underlying problems of count�
ing cuts� to the problem of counting Eulerian subgraphs in
the dual lattice� and therefore� to that of evaluating Pfaf�
�ans� which can be expressed in terms of determinants ����
Our results from the section �� show that unless P � NP
no such results can be extended to any non�planar crystal
lattice�

4. NON-PLANAR LATTICES: COMPUTA-
TIONAL INTRACTABILITY

Crystal lattices are de�ned in two stages� Bravais Lattices�
and their generalizations� the crystal structures ���� We will
present in this extended abstract the details of the dvevel�
opments for non�planar Bravais lattices� and leave the de�
scription of their extensions to crystal lattices to the �nal
version of the paper�

4.1 Bravais Lattices
Crystal lattices are de�ned in terms of Bravais sets of points�
We are interested in such sets in the two�dimensional and
three�dimensional space� A d�dimensional Bravais lattice L
is the in�nite set of points in the d�dimensional Euclidean
space whose position vectors r are given by

r � x�a� � x�a� � ���� xdad

where a�� a�� ���� ad are linearly independent vectors� and x�� x�� ���� xd
are integers� The �nite N� �N� � �����Nd sublattice of the
in�nite lattice L� denoted L�N�� ���� Nd�� is obtained by im�
posing a boundary for every xi� � � i � Ni� � � i � d�
Interaction are speci�ed as a set of pairs of points� typically
near�neighbour� Line segments are drawn between two inter�
acting lattice points� The lattice points are the vertices� and
the interaction pairs de�ne the edges of our lattice graphs�

4.2 Non-Planar Bravais Lattices
We will show that the computation of the ground states is
NP�complete in every non�planar Bravais lattice�
We �rst give a charcterization theorem in the spirit of the
Kuratowski theorem for planar Bravais lattices� The for�
bidden sublattice unvailed by the theorem� that we call the
Basic Kuratowskian� has interesting properties� First of all�
every non�planar Bravais lattice contains Kuratowskians�
i�e�� subdivisions of the Basic Kuratowaskian� Second� com�
puting ground states on the Basic Kuratowskian is NP�
complete� and the same property holds for any of its subdi�
vision� These two facts establish our �rst main result�

We then focus on a more elaborate version of the Kura�
towskians� called uniform Kuratowskian� We develop similar
results using them� In turn� we use these structures to es�
tablish computational intractability of partition functions�
where computing ground states is easy� but other compo�
nents are NP�hard�

4.2.1 The Kuratowskians
The �nite lattice graph in �gure � plays a special role in this
paper� It generically de�nes an in�nite lattice graph� We
call the ini�nite graph theBasic Kuratowskian� and denote it
by K�� It captures through its subdivisions� common struc�
tural characteristics present in each and every non�planar
in�nite Bravais lattice� We will use the term Kuratowskian
for any subdivision of the Basic Kuratowskian�

Definition �� We will call Kuratowskian every subdivi�
sion of K��

Let us remark that non�planarity for an in�nite lattice means
that one of its standard �nite subgraphs is non�planar�

Lemma �� The in�nite Basic Kuratowskian K� is a non�
planar graph� Moreover� every Kuratowskian is non�planar�



Figure �� A �nite sublattice of the Basic Kuratowskian K�

and a subdivision of it�

Proof� It su�ces that a standard �nite sublattice graph K�

is non�plnar� This means by the Kuratowski theorem that
one such sublattice has as a subdivision one of the Kura�
towski graphs� K��� or K�� Figure 4.2.3 shows a subdivi�
sion of K��� contained in K�� Clearly� the same property is
true for every subdivisions of K�� Each such subdivision will
have a a �nite sublattice graph that is non�planar�

We will show that every Bravais lattice contains Kuratowskians
as sublattices� This will provide a unifying framework of a
type of universality property with respect to the computa�
tional complexity of the partition functions for such lattices�

4.2.2 A Kuratowski-like Theorem for Bravais Lattices
In this section we give a necessary and su�cient condition
for a Bravais lattice graph to be planar� The characteriza�
tion� as in the Kuratowski Theorem� is in terms of forbidden
subgraphs� Our Basic Kuratowskian plays the same role as
the one played by the Kuratowski graphs K��� and K��
Consider an in�nite Bravais lattice L that is non�planar�
Non�planarity implies that there is a standard �nite sublat�
tice graph A that is non�planar� By the Kuratowski the�
orem� A contains a subdivision of one of the Kuratowski
graphs K��� and K�� say K� By translational invariance of
the Bravais lattice� there are in�nitely many disjoint copies
�their sets of vertices are disjoint	 of K in L� We will use
such occurences of K to identify non�planar pieces� called
corssing gates� Then we will interconnect these gates and
will form a network that connects in a planar manner all
these non�planar pieces� This construction will witness the
containment of a Kuratowskian in L�

Theorem �� A �D or �D in�nite Bravais lattice is pla�
nar if and only if it does not contain the Basic Kuratowskian
K� or any of its subdivisions�

Proof� Let us consider L an in�nite Bravais lattice�
��	 Suppose �rst that L contains a Kuratowskian� Then� by
the Lemma � it follows that L is a non�planar lattice graph�
�
	 Suppose now that L is non�planar� To establish the other
part of the theorem� we will show that for L there exists a
speci�c subdivision of K� that is contained in L� We treat
the two cases 
D and �D separately�

We will use pairs of �non�colinear� respectively� non�planar	
vectors� de�ning the interaction pattern of the lattice� to
construct corresponding �tesselation� planes in the lattice�

Figure 
� A �tesselation plane� of the Bravais lattice de�
�ned by two non�colinear vectors� It divides the plane into
paralelograms�

Then� non�planarity of the L would imply existence of sub�
divisions of the Kuratowski subgraphs� that in turn will pin�
point to occurences of crossing pair of paths� The combi�
nation between tesselation planes and crossing pair of paths
de�ne a �Kuratowski network�� This in turn contains a
subidvision on K��

� L is a �D Bravais lattice�
Crossing paths� Let � � f��� ��� ����� �tg be the interation
pattern of L� Assume that L is embedded in the plane�
with vertices drawn as points� and the edges as straight line
segments connecting corresponding points� L being non�
planar implies that some of the line segments cross� crossing
could happen between two segments� or� one segment can
cross a two segment path going through the middle ver�
tex� We use the Kuratowski theorem to �nd crossing paths�
The non�planarity of L implies that there is a standard ��
nite sublattice LN�N containing a subdivision of a graph
K � fK�� K���g� Let us �x that occurence of the subdivi�
sion of K in L� Because K is non�planar� there should exist
four vertices of K� say v�� v�� v�� v	 and two paths P� and
P� in K� such that� P� starts at v� and ends at v�� and P�
has end points v� and v	� and P� crosses P� exactly once�
Moreover� we chose the two paths such that they are mini�
mal in size with respect to this property�
Tesselation planes� As the interaction pattern of a non�
planar lattice graph needs to have at least � vectors� let
us consider two vectors that are non�colinear� say� �� �� in
�� Let T the corresponding tesselation of the 
D plane�
Crossing gates� We will form such a �crossing gate� by us�
ing the two crossing paths P� and P� that we identi�ed inK�
and a paralelogram A in T that is large enough and contains
P� and P� in the planar area that it de�nes� We pick A such
that ��	 we can extend P� and P� such that they become di�
agonal paths for A such that these extensions are contained
inside A� using no edge segments from A�s boundary� The
resulting structure consisting of A together with the these
crossing diagonal paths is called a crossing gate� Let us note
that such a crossing path could be unique� but it must exist�
Both K��� and K� are non�planar� but could become planar
if one one of their edge is removed� Kuratowski Network�
Consider now an arrangement of these crossing gates as ar�
ranged in the �gure 4.2.2� The crossing gates are connected
using connecting paralelograms of T of appropriate size� We
call the arrangement a Kuratowski Network� Note that the
network connects in a planar way non�planar crossing gates�
It is easy to see that this Kuratowski network contains a
subdivision of K�� The crossing gates are arranged in a row
and such rows alternate with rows with no gates� Therefore�
L� contains a subdivision of K��

� L is a �D Bravais lattice�
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Figure �� A� An occurence of a subdivision K of K��� in
a non�planar lattice� B� A pair of crossing paths given by
K extended to a crossing gate within a paralelogram of a
tesselation plane

Figure �� The Kuratowski Network in a 
D non�planar lat�
tice

The proof is as before� with the exception that we are now
in �D� and a few things change� One is the fact that � paths
crossing� is no longer well�de�ned� Therefore� we will con�
sider two non�colinear vectors ��� �� � �� as before� and the
teselation planes Ti that they de�ne� Consider K� a subdi�
vision of a Kuratowski graph K� that is contained in L� K�

is non�planar� and so is any �projection� on any tesselation
plane Ti� Our crossing gates will be three�dimensional� while
the interconnection between them will be two�dimensional
planar�
Let us pick a tesselation plane T that is de�ned by non�
colinear vectors �� and �� such that it has no vertices in
common with K�� We will use a third vector �� � �� that
is not co�planar with the �rst two� to project the ends of a
pair of crossing paths �as viewd crossing when projected to
T 	 from K��
We pick as before two crossing paths P� and P� in K� with
end points v�� v�� and respectively v�� v	� Our choice of the
crossing paths is such their four end points are projected into
four points on T � using the �� lines for projection� We can
always make this choice� if necessary shortening the paths
and extending them with edges in the �� and �� directions�
Let the projections of v�� v�� v�� v	 on T be v��� v

�

�� v
�

�� v
�

	�
We will continue our construction as in the 
D case� by
�nding a paralelogram A of T that contains these four points
and such that each of our crossing paths could be extended
with segments interior to A to connect opposite corners of
A� The paralelogram A and these diagonal paths form the
new �crossing gates��
It is easy to see now� that we can use the plane T to connect
the gates and to form a similar Kuratowski network for L�
Figure 4.2.2 shows the generic construction� It is easy to see
that a subdivision of K� is contained in L having the �X�
crosses partially� outside the plane T � where the �X�s are
connected by a two�dimensional planar set of edges� Clearly�

Figure �� The Kuratowski Network in a �D non�planar lat�
tice

for a given non�planar lattice� the Kuratowski network is not
unique�

4.2.3 Universality of graph embedding into Kura-
towskians

In this section we show that for every ��regular graph� and
for every Kuratowskian� there is one subdivision of the graph
that is contained into the Kuratowskian�
Kuratowskians are universal for subdivisions of ��

regular graphs

The lattice K� has the following ���universality� property�

Definition 
� A lattice is called ��universal if every ��
regular graph has a subdivision that is contained in the lat�
tice�

Lemma 
� K� is ��universal� Moreover� every Kuratowskian
is also ��universal�

Proof� Figure 4.2.3 shows a subdivision of K�� contained in
K�� We now present an algorithm that for every ��regular
graph G � �V�E	� will �nd a subdivision G� of G that will
be contained in K��
Suppose that V � fv�� ����� vng and E � fe�� ����� emg� We
will select a set of � � n columns in K�� three columns for
each vertex ofG� From left�to�right� the �rst three columns
will be assigned to vertex v�� the next three to vertex v� and
so on� The vertices will be located in the middle column of
the three columns associated to it� We will also select m
X�rows� each corresponding to an edge of G� The �rst row
of X�es will be assinged to e�� the next to e� and so on�
Each edge ek � �vi� vj	 will be present as a subdivision� i�e��
a path pek � that will connect vi with vj � Suppose that i � j�
The path pek will use� ��	 the column where vi is located
to start from vi and to reach lower to the X�row assignated
to the edge ek� �
	 it will continue on this row till it will
reach the column where vj is located� ��	 �nally� it will use
this column to reach the vertex vj � All these paths will be
vertex disjoint regardless what the edge structure of G is� As
expected� when such paths must cross� the X�gates will be
used to accomodate this crossing whithout sharing vertices�

4.2.4 The Uniform Kuratowskians
A similar set of results can be obtained for a special type
of Kuratowskian� called uniform Kuratowskian� They are
going to play a similar role� by providing a Kuratowski�
like characterization of non�planar lattices� and by provising
again universality of embedding for ��regular graphs� This
time� however� the subdivisions of ��regular graphs will be
uniform� that is� all edges replaced by subdivisions of the
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Figure �� Construction of the uniform crossing gate

same length� The new construction is based on an uniform
crossing gate that is presented in the Figure �� Complete
details will be presented in the �nal version of this paper�

5. COMPUTATIONAL COMPLEXITY OF THE
3D ISING MODELS

We will consider four cases� models with f�J� ���Jg in�
teractions� with f�J� �g interactions� with f���Jg interac�
tions� and with f�J��Jg interactions� We will show that
the computation of the partition function is NP�complete for
all such cases when the crystal lattice is non�planar� How�
ever� as we restrict the type of interactions along these four
models� the roots of computational intractability become
deeper�

5.1 Ising Models with f�J� ���Jg Interactions
Recall that computing the lowest energy state� i�e�� the ground
state is equivalent with computing the cut of minimumweight�
where the cut is de�ned by the edges that have their nodes
associated opposite spins� We show that in this case� com�
puting the ground state is NP�complete� We reduce the
problem to that of computing the maximum cut in ��regular
graphs� The proof uses the containment� for every non�
planar lattice of a Kuratowskian into the lattice�

Theorem 
� Consider the Ising model with interaction
energies f�J� ���Jg� For every non�planar crystal lattice�
computing the Ground States of �nite sublattices is NP�
complete� Therefore� computing the Partition Functions for
the �nite sublattices is also NP�complete� NP�complete�

Proof� Let us consider L a non�planar crystal lattice� and
let K� be its Kuratowskian� Let us assign weight � to every
edge of L that is not in K�� As computing ground states on
�nite sublattices is now equivalent to computing the Min�
imim Weight Cut on K�� it will su�ce to show that this last
task is NP�complete� This is established in lemma �� which
in turn establishes the theorem� The lemma and its proof
are similar to what we can coin as the Barahona Lemma�
����

Lemma �� Computing Min Weight Cut on K� with weights
f�J� ���Jg is NP�complete� Moreover� the same is true for
every subdivision of K��

Proof� By Lemma 
� for every ��regular graph G there
exists a subdivision G� of G that is contained in K�� Let



us assign weight � to every edge of K� that is not in G��
Consider one edge e � �v�� v�	 and the corresponding subdi�
vision of e namely pe � �w�� w�� ���� wt��	 that is composed
of the t � � edges� Label one edge picked arbitrarily by �J
and the rest of the edges by �J � We claim that there exists a
cut in G of size � h if and only if there exists a cut in �G�� �	
of weight � �hJ � Indeed� Consider a cut C � �S�� S�	 in
G of size r� and let EC be the edges of the cut� Then it is
easy to see how to construct a cut C� in �G�� �	 of weight
�r� Let EC� be the set of edges labeled �J in all the paths
pe� where e � EC � Let C� be the cut de�ned by the edes
EC� as follows� We de�ne the cut �S��� S

�

�	 such that Si 	 S�i
in the obvious way� We have w�C�	 � �tJ � Conversely� let
us observe that if there is a cut C� in G� of weight �rJ �
and the cut edges are the only edges labeled �J then there
exists a cut in G of size r� However� if C� contains also edges
labeled �J � it may not exist a cut is G of size exactly r� but
it should exist one cut of larger size�
Therefore� as computing Max Cut for ��regular graphs is
NP�complete� it follows that computing the MinimumWeight
Cut for K� with labels f�J� ���Jg is NP�complete� It is easy
to see that the same conclusion holds for every subdivision
of K�� as ��universality also holds for all subdivisions of K��

5.2 Ising Models with f���Jg and f�J� �g Inter-
actions

In this section we analyse the case of non�negative pairwise
interactions for the f���Jg� The proofs use the stronger re�
sult about the containment of uniform Kuratowskians into
every non�planar lattice� We show that computing the high�
est energy states is NP�complete� Again� we will reduce the
problem to that of �nding the maximum cut in a ��regular
graph�
The analysis of the f�J� �g interactions model is a sim�
ple adaptation of the f���Jg case� The only change is
that what is computationally intractable about the parti�
tion function is now computing the ground states�

Theorem �� Consider the Ising model with interaction
energies f���Jg� For every non�planar crystal lattice� com�
puting the highest energy states for its �nite sublattices is
NP�complete� Therefore� computing the partition function
for the �nite sublattices is also NP�complete�

Proof of the Theorem� Let us consider L a non�planar
crystal lattice� and let K� be its Uniform Kuratowskian� Let
us assign weight � to every edge of L that is not in K��
It is easy to see that computing the highest energy states
is equivalent to the computation of the largest cut in the
graph� Due to uniform universality of embedding� for every
��regular graph G� we can �nd an uniform subdivision G�

of G contained in K�� Let us assign weight � to every edge
that is not in G�� and weight �J to every edge in G�� The
Lemma � shows that computing the maximum cut on these
uniformly dialated ��regular graphs is reducible to comput�
ing the maximum cut in ��regular graphs� and therefore� it
is NP�complete� As computing the highest energy states is
NP�complete� the partition function is also intractable�

For a positive integer k� the k�dialation of a graph G is a
subdivision of the graph in which every edge of G is replaced
by a vertex disjoint path of with k new nodes� i�e�� having
�k � �	 edges�

Lemma �� For every ��regular graph G� let k be an even
number� and let G�k� be the k�dialation subdivision of G�
Then G has a cut of size � c if and only if G�k� has a cut
of size � c� k j E�G	 j�

Proof�

LetG be an arbitrary ��regular graph� andG�k� its k�dialation
subdivision�
� Clearly� if G has a cut C with c edges� then G�k� has a cut
C� of size c�k j E�G	 j� Indeed� every edge e of G is dialated
to a path pe of odd size� because k is even� For each edge of
G in C� the edges of the path pe will alternate in the cut C�

crossing from one side to another in the cut� For every edge
e of G not in C� with exactly one exception� all the edges
of its path pe� will alternate in the cut C�� Therefore� for
every edge e of G� every path pe contributes with k edges in
the cut C�� a total of k j E�G	 j edges� For each edge in C�
its path contributes with one more edge in C�� a total of c
more edges�

� Suppose that G�k� has a cut C� of size c� k j E�G	 j� Let
us consider for every e the path pe and its structure with
respect to the cut� Let A�B be the set of edges e of G for
which their pe is with both endpoints on the same side of
the cut� and respectively� with one endpoint in one side� and
the other in the other side� Suppose j B j	 c� As each edge
in A can contribute to at most k edges� and only edges in
B can contribute with k � � edes� we have that the size of
the cut C� is � k j A j �k j B j �c � k j E�G	 j �c which is
a contradiction� So j B j� c� But each path pe now can be
contracted to the edge connecting its endpoints� such that
we have all paths in A giving rise to edges not in the cut�
and all paths in B giving rise to edges in the cut� The result�
ing graph is G and the cut is a legitimate cut of G of size � c�

5.3 Ising Models with f�J��Jg Interactions
The analysis of this case reveals similar intractability results�
The constructions are involved and will presented in the �nal
version of the paper�
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